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1 QFT on Minkowski spacetime

1.1 Drawbacks of the Hilbert space description of QFT

One theory, one Hilbert space? In QM, every representation of the CCR [x, p] = i~ on a

Hilbert space H is unitary equivalent to the Schrödinger representation (Stone-von-

Neumann theorem)

And in QFT? Not only does the theorem not hold for the CCR

[φ(x0,x), φ̇(x0,y)] = i~δ(x− y)

the bug of inequivalent representations is a feature, since two states, which differ by

an infinite amount of energy yield inequivalent representations

Perturbation theory Having fixed a Hilbert space H and representations of the CCR

and the translation group (with generators Pµ = (H,P ). Can one apply the QM

formulation of PT? HAAGS THEOREM: The interaction picture does not

exist, i.e. all other Hamiltonians H ′, which are translation invariant and define an

interacting time-evolution by

eiH
′tφ(0,x)eiH

′t

for the time-zero fields φ(0,x) are proportional to the free Hamiltonian H ′ = H +

const.

And path-integrals? The Euclidean measure of the interacting theory, defined by

dµ(φ) = Z−1ei
∫
d4x V (φ(x)) dµ0(φ)

exists only, if V is at most quadratic.
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1.2 Systematic approach by AQFT

1.2.1 Straightforward approach to CM

What means mechanics? Want to describe the dynamics of pointlike (test-)particles un-

der the influence of internal and external forces

Specify the arena for physics! Specify a configuration space Q, i.e. the space of all possi-

ble positions of the particles. Usually Q = SN where S is a subset of R3 and N = #

of particles

Specify the model! Introduce a function H on T ∗Q, which describes the total energy of

the system, depending on all positions and momenta (and possibliy time)

Which dynamics is realized? Search for solutions of Hamilton’s equations: q̇ = ∇pH and

ṗ = −∇qH for given ICs (q0, p0) STATES

What can be measured? Real functions F ∈ C∞(T ∗Q) can be used to model a measure-

ment apparatus. The evluation of F on the specific solution yields the predicted

measured value, given the ICs OBSERVABLES

1.2.2 Geometric approach to CM

Many physical situations yield similar properties, so can we find a description of CM, which

gives us information about general systems, without referring to specific solutions?

What do all observables have in common? The sum/product of observables are observ-

ables again. A(Q) = C∞(T ∗Q) is a commutative algebra.

Relations between observables? There is a unique Poisson bracket {·, ·} for every Hamil-

tonian H , which

• is antisymmetric

• acts as derviation in both entries

• fulfils the Jacobi-identity → Lie-algebra

• imposes dynamical equations for the observables Ḟ = {H,F}

independent of the particular solution. POISSON ALGEBRA

States The pure states of the system are evaluation functionals on solutions
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2 Relativistic Field theory on R4

Observables in field theory: Fields at a point x: φ(x) is interpreted as field strength at

a point x. In quantum theory: impossible to measure φ at a sharp point x due to

Heisenberg principle → φ(x) is much too singular

Smeared fields: Go over to a mean of φ over a region, weighted with a weight f . Then

φ(f) =

∫

dx f(x)φ(x)

represents this quantity. Conveniently we choose supp f bounded, then φ becomes a

distribution on M .

What is f? The smearing function f models the measurement apparatus, which measures

φ in a compact region in space and time

New paradigm: The fundamental object of the theory is the set {A(O) : O ⊂M} of local

algebras. A(O) is generated by smeared fields with support in O:

A(O) =
∞⋃

N=1

{
N∑

n=1

λnφ(f1) · · ·φ(fn), supp(fi) ⊂ O

}

Expected relations: If A(O) shall encode all possible observables in O, then we expect

• Causality: If O is spacelike to O′, then [A(O),A(O′)] = 0

• Compatibility (Isotony): If O ⊂ O′ then A(O) ⊂ A(O′)

• Covariance: p Poincare trafo :O → O′, then we have an homorphism of αp :

A(O) → A(pO)

• Time-slice axiom: The algebra A(O) is contained in A(Nε(Σ)) where Σ is a

Cauchy surface for O and Nε(Σ) is an ε-nbhd. of Σ: Existence of hyperbolic

equations

• (optional) Existence of a ground state: Not fundamental object and not impor-

tant for theory

which are in fact the HAAG-KASTLER AXIOMS

Aha... Formalism is independent of a concrete realisation ofA(O) as operators on a Hilbert

space.
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States on A(O) A state ω on A(O) is a positive (continuous) linear functional on A(O),

such that ω(A∗A) ≥ 0 and ω(1) = 1. On a Hilbert space every vector and every

density matrix yield a state by

ω(A) = 〈ψ|A |ψ〉 , ω(A) = tr(̺A)

In general the space of states contains a lot of unphysical states (selection criterion

needed)

Where is my Hilbert space? Fixing a state ω on A(O), then there is a representation of

A(O) as operators on a Hilbert space H, which is unique up to unitary equivalence

GNS CONSTRUCTION

(A(O), ω)
GNS
−→ (π,H,Ω), π : A(O) → LinOp(H), Ω ∈ H

with 〈Ω| π(A) |Ω〉 = ω(A)

Where are my beloved particles? Depends on ω, if ω is pure, then there is a Hilbert space

H1, such that the GNS-Hilbert space is the Fock space over H1 with Fock-vacuum

Ω.

Examples • Free scalar field, vacuum state specified by

ωvac(φ(x)φ(y)) =
1

(2π)3

∫

d4p e−ip(x−y)θ(p0)δ(p
2 −m2)

and higher moments by quasifree-property is pure. Reduces to usual construc-

tions, including creation and annihilation operators.

• Free scalar field, thermal equilibrium state, defined by

ωβ(φ(x)φ(y)) =
1

(2π)3

∫

d4p e−ip(x−y)ε(p0)δ(p
2 −m2)

1− e−βp0

ωβ is mixed, GNS Hilbert space H is no Fock space, no stable excitation from

Ω exists.
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3 Interacting QFT

3.1 The algebra of Wick products

Local interactions Can we add local interactions to A(O)? Experience shows, that they

provide physical meaningful models. Look at

φ(f)φ(g) =

∫

dx dy φ(x)φ(y)f(x)g(y)

We would need f(x)g(y) → f(x)δ(x− y) for powers of φ at the same point. Then

lim
f ·g→f ·δ

φ(f)φ(g) =

∫

dx φ2(x)f(x)

This is not possible, the pointwise product φ(x)φ(y) is way to singular for such an

operation.

Wick ordering Define a H-dependent Wick-ordering by

:φ(f)φ(g):H = φ(f)φ(g)−H(f, g)1

and higher products accordingly. One can take the above limit, hence define objects

like :φn(f):H , whenever H “kills the singularity on the diagonal”

Hadamard distribution Every such H is of the form

H(x, y) ∼
1

(x− y)2 + iε(x0 − y0)
−
m2

2
log

[
m2(x− y)2

]
+ smooth(x, y)

where H has to be a bisolution to hyperbolic equation of motion for φ(f). There exist

many of such – equivalent – Wick orderings. One distinguished H on Minkowski by

Poincare invariance → vacuum two-point function H = ∆+

Algebra of Wick polynomials WH contains polynomials of the field by

:Φn(f):H =

∫

dx :φ(x)n:H f(x)

and depends on H . The extension of the operator product on A(O) yields Wicks
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theorem

:Φn(f):H :Φn(g):H =

n∑

k=1

∫

dx dy :φn−k(x)φn−k(y):H H(x, y)kf(x)g(y)

where the k-fold power of H at the same point is well-defined, due to the singular

structure of H , which behaves well enough

Time-ordered products A time-ordered product for elements of A(O) can easily obtained

by

φ(f) ·T φ(g) =

∫

dx dy f(x)g(y)
(
φ(x)φ(y)− θ(y0 − x0)[φ(x), φ(y)]

︸ ︷︷ ︸

i∆adv

)

Time-ordering on WH Trying to accomplish the same structure on WH amounts to re-

placing H → H − i∆adv = HF in Wicks theorem

:Φn(f):H ·T :Φ
n(g):H =

n∑

k=1

∫

dx dy :φn−k(x)φn−k(y):H HF (x, y)
kf(x)g(y)

The k-fold power of HF is unfortunately not a well defined distribution: well-known

UV-divergencies of pert. QFT, since

F(HF (x− y)k)(k) =

∫

dk−1P H̃F (p1) · · ·HF (pk−1)HF (k − p1 − . . .− pk−1)

Extension of Distributions Due to the time-ordering property of ·T, the time-ordered

product is defined everywhere, up to the diagonal x = y

:Φn(f):H ·T :Φ
n(g):H =







:Φn(x):H :Φn(y):H x0 > y0

:Φn(y):H :Φn(x):H y0 > x0

The extension to x = y is not unique: Renormalization freedom

Renormalized time-ordered product: Fixing all free parameters of the extension process

(by experimental input) the obtained time-ordered product is called renormalized

time-ordered product ·T,ren which is now defined on WH
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3.2 Interacting theory

S-matrix The S-matrix is given by the renormalized time-ordered exponential of a Wick-

monomial V = :Φn:H ∈ WH

S(V ) = exp
·T,ren

(iV )

The main theorem of renormalization states, that every two S-matrices S1 and S2,

obtained by different renormalizations are related by

S1(V ) = S2(V + A) A ∈ WH

Equivalence of all (known) renormalization prescriptions. A theory is called renormal-

izable if A has only finitly many monomials, then one needs finitely many parameters

at every order to specify the theory.

Interacting algbra The interacting field

RV (φ(f)) = S(V )−1(S(V ) ·T,ren φ(f))

satisfies the interacting field equations and generates the algebra of interacting fields

AV (O) = RV (A(O)).

Interacting Greens functions and Wightman functions One obtains the interacting Greens-

and Wightman functions by

ω(RV (φ(f1) ·T · · · ·T φ(fn)) = ω(S(V )−1(S(V ) ·T φ(f1) · · · ·T φ(fn)))

ω(RV (φ(f1)) · · ·RV (φ(fn))) = ω(S(V )−1(S(V ) ·T φ(f1))S(V )−1(S(V ) ·T φ(f2)) · · · )

3.3 Adiabatic limit

Adiabatic Limit For the procedure to be well-defined, we had to smear the interaction

V = :Φn(f): with a test function f . Then the above functions are not translation

invariant: We need to take the limit f → const. This is highly risky and does not

exist in general (IR DIVERGENCIES)
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• vacuum in purely massive theories: Epstein and Glaser

• vacuum in massless scalar theories and QED: Blanchard and Seneor

• vacuum in Non-abelian Yang-Mills: unknown (probl. related to mass gap)

• thermal equilibrium state: work in progress

In the adiabatic limit, they states defined above converge to the physical important

states (interacting vacuum, interacting thermal equilibrium).

Gell-Mann and Low The Gell-Mann and Low formula for interacting Greens functions

can be proven to hold, if we choose H as the vacuum 2PF and ω as the free vacuum

state. Then HF = ∆F and we get

ω(S(V )−1(S(V ) ·T φ(f1) · · · ·T φ(fn))) =
ω(S(V ) ·T φ(f1) · · · ·T φ(fn))

ω(S(V ))

that means, that the derived Feynman rules for vacuum QFT are correct.
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